
The quantum spin-1/2 J1–J2 antiferromagnet on a stacked square lattice: a study of effective-

field theory in a finite cluster

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 146004

(http://iopscience.iop.org/0953-8984/22/14/146004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 07:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 146004 (7pp) doi:10.1088/0953-8984/22/14/146004

The quantum spin-1/2 J1–J2
antiferromagnet on a stacked square
lattice: a study of effective-field theory in a
finite cluster
Wagner A Nunes1, J Ricardo de Sousa1,2, J Roberto Viana1 and
J Richter3

1 Departamento de Fı́sica, Universidade Federal do Amazonas, 3000, Japiim, 69077-000,
Manaus-AM, Brazil
2 National Institute of Science and Technology for Complex Systems, Departamento de Fı́sica,
3000, Japiim, 69077-000, Manaus-AM, Brazil
3 Institut für Theoretische Physik, Universität Magdeburg, PO Box 4120, 39016 Magdeburg,
Germany

Received 19 September 2009, in final form 14 January 2010
Published 19 March 2010
Online at stacks.iop.org/JPhysCM/22/146004

Abstract
The ground state phase diagram of the quantum spin-1/2 Heisenberg antiferromagnet in the
presence of nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions (J1–J2 model) on
a stacked square lattice, where we introduce an interlayer coupling through nearest-neighbor
bonds of strength J⊥, is studied within the framework of the differential operator technique. The
Hamiltonian is solved by effective-field theory in a cluster with N = 4 spins (EFT-4). We obtain
the sublattice magnetization mA for the ordered phases: antiferromagnetic (AF) and collinear
(CAF—collinear antiferromagnetic). We propose a functional for the free energy �μ(mμ)

(μ = A, B) to obtain the phase diagram in the λ–α plane, where λ = J⊥/J1 and α = J2/J1.
Depending on the values of λ and α, we found different ordered states (AF and CAF) and a
disordered state (quantum paramagnetic (QP)). For an intermediate region α1c(λ) < α < α2c(λ)

we observe a QP phase that disappears for λ below some critical value λ1 � 0.67. For
α < α1c(λ) and α > α2c(λ), and below λ1, we have the AF and CAF semi-classically ordered
states, respectively. At α = α1c(λ) a second-order transition between the AF and QP states
occurs and at α = α2c(λ) a first-order transition between the AF and CAF phases takes place.
The boundaries between these ordered phases merge at the critical end point CEP ≡ (λ1, αc),
where αc � 0.56. Above this CEP there is again a direct first-order transition between the AF
and CAF phases, with a behavior described by the point αc independent of λ � λ1.

1. Introduction

Recently, studies of low-dimensional spin quantum systems
have been of great interest because enhanced quantum
fluctuations lead to unusual ground states and unusual low-
temperature properties. At null temperature, we have an
absence of thermal fluctuations and the phase transitions
between the ground state are driven purely by the interplay
of quantum mechanical fluctuations and competition between
interactions [1].

One of the models most studied in the past is that of
a spin-1/2 Heisenberg antiferromagnet [2]. The quantum

Heisenberg antiferromagnet is a canonical model to describe
quantum phase transitions. In particular, the two-dimensional
(2D) quantum spin-1/2 Heisenberg model with competing
nearest-neighbor (nn) and next-nearest-neighbor (nnn) anti-
ferromagnet exchange interactions (i.e. frustration) on a square
lattice (J1–J2 model) has been exhaustively studied by several
methods [3–16], where the critical properties are relatively
well known. In the absence of the nnn (next-nearest-neighbor)
interactions (i.e. J2 = 0), the system is not frustrated and
the ground state possesses antiferromagnetic (AF) long-range
order (LRO) with wavevector Q = (π, π). The presence of
the nnn interactions is expected to induce strong frustration to
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break the AF order, and a quantum paramagnetic (QP) phase
between α1c and α2c (α = J2/J1). For α > α2c we have
two degenerate collinear states with wavevectors Q = (π, 0)

and (0, π) that are characterized by a parallel spin orientation
of nearest neighbors in the vertical (or horizontal) direction
and an antiparallel spin orientation of nearest neighbors in
the horizontal (or vertical) direction and therefore exhibit Néel
order within the initial sublattice A and B. The recent syntheses
of magnetic materials such as Li2VOSiO4 and Li2VOGeO4

are well described by the J1–J2 model [17, 18] with α � 1
and have stimulated further interest in this quantum frustrated
model. These two isostructural compounds are characterized
by a layered structure containing V4+ (S = 1/2) ions. The
structures of the V4+ layer suggest that the superexchange is
similar with a small interlayer coupling J⊥ = λJ1, where
λ � 10−2. In general, an interlayer coupling J⊥ may be
relevant in real materials, it may have a crucial influence of
the ground state magnetic ordering.

The nature of the transition between the AF and QP phases
as well as the properties of the QP state as still under debate.
Candidates examined for the QP phase are: a resonating-
valence-bond (RVB) state [8], a plaquette state [20, 21], a
dimer state [7], and a state with both dimer and plaquette
structures [22]. Whether the QP phase is a singlet state with
gapped excitations to the first triplet state [15] has also been
investigated.

The critical properties of frustrated spin models strongly
depend on the dimensionality (d), Hamiltonian symmetry (n)
and spin (S). In particular, for the case of the 2d classical (S →
∞) J1–J2 Heisenberg (n = 3) model there is a consensus
regarding the non-existence of the QP state, with a first-order
transition at αc = 1/2 that separates the AF and collinear
phases. The Ising (n = 1) limit also present a direct first-order
transition [23] at αc = 1/2. Quantum fluctuations can modify
drastically the ground state behavior, inducing, for example,
the QP state in the quantum spin-1/2 J1–J2 Heisenberg model
on a square lattice. For the one-dimensional (1d) case, this
model with spin S = 1/2 does not have an AF ordered ground
state, but exhibits a transition from a critical state to a dimer
state at α

q
c = 0.241 critical point [24]. Although in three

dimensions magnetic long-range order is more likely, a QP
state may also be observed for frustrated 3d systems, e.g. for
the Heisenberg antiferromagnet on the pyrochlore lattice [25].
The quantum spin-1/2 Heisenberg model on the body-centered
cubic (bcc) [26] and simple cubic (sc) [27] lattices has been
studied, and it was shown that this 3d quantum spin-1/2 J1–
J2 model does not have a quantum disordered QP phase,
rather it exhibits a direct zero-temperature first-order phase
transition at α

q
c (αq

c � 0.70 and 0.21 for the bcc and sc
lattices, respectively) from the two-sublattice Néel phase to
the so-called lamellar collinear state (sequences of up and
down planes) driven by frustration J2. The critical behavior
of the square lattice version of the quantum spin-1/2 J1–J2

Heisenberg model has been studied for many years, but very
little has been done in the 3d case.

From the experimental viewpoint, to explore the ground
state phase diagram of frustrated compounds described by the
J1–J2 model, the high to the low α regime can be investigated

continuously by applying high pressure (P), which modifies
the bonding lengths and angles. Recently, x-ray diffraction
measurements [28] on the Li2VOSiO4 compound have shown
that the ratio α decreases by about 40% when the pressure
increases from 0 to 7.6 GPa.

The outline of the paper is as follows. In section 2, the
model is presented and the formalism developed in section 3.
In section 4, the results of the ground state phase diagram in the
λ–α plane and the behavior of the order parameters in the AF
and CAF phases are discussed. Finally, in section 5 we present
a short conclusion.

2. The model

In this work, we consider the influence of such an interlayer
coupling on the quantum spin-1/2 J1–J2 model on a simple
cubic lattice, which is described by following Hamiltonian:

H =
∑

n

(
J1

∑

〈i, j〉
σ in ·σ jn + J2

∑

〈〈i,l〉〉
σ in · σ ln

)

+ J⊥
∑

i,n

σ in ·σ in+1 (1)

where σ in = (σ x
in, σ

y
in, σ

z
in) are the spin-1/2 Pauli operators

at site i in the nth-layer on the simple cubic lattice. The first
and second sums run over the nearest-neighbor (nn) and next-
nearest-neighbor (nnn) spin pairs, respectively, J1 (J2 = αJ1)
is the nn (nnn) coupling and J⊥ (=λJ1) the interlayer coupling.
In the two-dimensional limit (λ = 0), in the ground state
phase diagram, the QP state is present, while in the isotropic
3d case (λ = 1) one may expect that this quantum disordered
state is not observed. The main motivation of this work is to
discuss the competition between the interlayer λ and frustration
α parameters and to investigate their influence on the QP
state. Here we consider the case of antiferromagnetic (AF) nn
interactions that correspond to J1(J⊥) > 0.

The theoretical treatment of the frustrated quantum
antiferromagnetism is far from being trivial. Many of the
standard many-body methods, such as quantum Monte Carlo
techniques, may fail or become computationally infeasible
to implement if frustration is present due to the minus-sign
problem. Hence, there is considerable interest in any method
that can deal with frustrated spin systems. Recently [29],
the model (1) has been studied for antiferromagnetic J1

and J⊥ by using the coupled-cluster (CCM) and rotation-
invariant Green’s function (RGM) methods. It was found,
that for a characteristic value λ1 � 0.31(0.19) the quantum
paramagnetic phase (i.e. the QP state) disappears using the
RGM (CCM) approach. This considerable difference in that
value for λ1 further motivates us to study this issue by
alternative methods. In this paper we will use the effective-field
theory (EFT) in a finite cluster to treat the model (1) and obtain
the phase diagram at T = 0 (ground state). This method have
been applied successfully to study a large variety of problems,
in particular quantum models in arbitrary dimensions [30] and
it is able to study frustrated models [16, 23, 27, 31, 32].
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3. Effective-field theory

The starting point for the EFT calculation is to choose a
finite cluster and obtain an average of spin operators by using
the Callen and Suzuki generalized relation (for more details,
see [30]). The EFT provides a hierarchy of approximations
to obtain thermodynamic properties of magnetic models. One
can continue this series of approximations to consider larger
and larger clusters and as a consequence, better results are
obtained. The exact solution would be obtained by considering
an infinite cluster. However, by using relatively small clusters
that contain the topology of the lattice, one can obtain a
reasonable description of the thermodynamic properties. The
model (1) in two (λ = 0) [16] and three (λ = 1) [27]
dimensions was recently treated by EFT in a cluster with two
spins (EFT-2), where the phase diagram at T = 0 and finite
temperature was obtained. In this limit of zero interlayer
parameter λ we have the presence of the QP phase, while
in the three-dimensional limit the QP states have not been
observed. For quantum spin systems, an appropriate choice
for the ground state of the ordered phase is often a classical
spin state.

To treat the phase diagram of the model (1), firstly the
order parameters (magnetization of sublattice mA) of the AF
and CAF ordered phases are calculated. As a starting point
for this calculation (mA), we use the following expression
for the average of a general function involving spin operator
components O({n})

〈O({n})〉 =
〈

Tr{n}{O({n})e−βH{n} }
Tr{n}{e−βH{n} }

〉
, (2)

where the partial trace Tr{n}{· · ·} is taken over the set {n}
of spin variables (finite cluster) specified by the multisite
spin Hamiltonian H{n} and 〈· · ·〉 indicates the usual canonical
thermal average. The interactions within the cluster are treated
exactly and the effect of the remaining lattice spins is treated
by a given approximation (EFT).

In order to study the Hamiltonian (1), we use the four-site
cluster approximation given by (see figure 1)

H4 = J1(σ a ·σ b + σ b · σ c + σ c ·σ d + σ d ·σ a)

+ αJ1(σ a · σ c + σ b · σ d) + �Ho4, (3)

with
�Ho4 = σ z

a C1 + σ z
b C2 + σ z

c C3 + σ z
d C4, (4)

C1 = J1(σ
z
1 +σ z

2 )+λJ1(σ
z
6 +σ z

11)+αJ1(σ
z
3 +σ z

4 +σ z
5 ), (5)

C2 = J1(σ
z
5 +σ z

16)+λJ1(σ
z
10+σ z

15)+αJ1(σ
z
1 +σ z

17+σ z
18), (6)

C3 = J1(σ
z
18 + σ z

22) + λJ1(σ
z
20 + σ z

24) + αJ1(σ
z
16 + σ z

25 + σ z
26),

(7)
and

C4 = J1(σ
z
4 +σ z

25)+λJ1(σ
z
9 +σ z

14)+αJ1(σ
z
2 +σ z

22+σ z
31), (8)

where α = J2/J1 and λ = J⊥/J1.
Substituting equation (3) in (2), we obtain the magnetiza-

tion per spin in sublattice A by

mA = 〈σ z
a 〉 =

〈
−∂ lnZ4(C)

∂βC1

〉
, (9)

with the partition function

Z4(C) = Tr{σ }{e−βH4 }, (10)

where C = (C1, C2, C3, C4) and {σ } = {σ a, σ b, σ c, σ d}.
We have also treated the model (1) by using a finite cluster

with N = 2 spins (EFT-2), which was previously developed
in [16, 27] to study the two- (λ = 0) and three- (λ = 1)
dimensional limits. On the other hand, using EFT-2 we obtain
not the phase diagram in the λ–α plane for all values of
interlayer parameter (λ), only the particular limits (λ = 0, 1).
Therefore, we extend our calculations of EFT for a cluster with
N = 4 spins.

Using the identity exp(a · D) f (x) = f (x + a), where
D = (D1, D2, D3, D4) and a = (a1, a2, a3, a4) are four-
dimensional differential operator and vector, respectively,
Dμ = ∂

∂xμ
, the equation (9) can be rewritten as

mA = 〈e−K1(D1+αD2)σ
z
1 · e−K1(D1+αD4)σ

z
2 · e−K1(D2+αD1)σ

z
5

· e−K1(D2+αD3)σ
z
16 · e−K1(D3+αD2)σ

z
18 · e−K1(D3+αD4)σ

z
22

· e−K1(D4+αD1)σ
z
4 · e−K1(D4+αD3)σ

z
25

· e−λK1[(σ z
6 +σ z

9 )D1+(σ z
10+σ z

11)D2+(σ z
14+σ z

15)D3+(σ z
20+σ z

24)D4]

· e−αK1(σ
z
3 D1+σ z

17 D2+σ z
26 D3+σ z

31 D4)〉g(x)|x=0, (11)

with

g(x) = −∂ lnZ4(x)

∂x1
, (12)

Z4(x) = Tr{σ }{e−A(x)}, (13)

and

A(x) = K1(σ a · σ b + σ b · σ c + σ c · σ d + σ d · σ a)

+ αK1(σ a · σ c + σ b · σ d) + σ z
a x1 + σ z

b x2

+ σ z
c x3 + σ z

d x4, (14)

where K1 = β J1.
The operator (14) can be written in matrix form, where

we use the basis of the {σ z
a , σ z

b , σ z
c , σ z

d } components for
diagonalization, resulting in a 16 × 16 matrix. The matrix
is diagonalized numerically and them the function g(x) is
obtained for a given value of reduced temperature t = 1/K1,
and fixed α and λ parameters.

Now using the van der Waerden identity for the σ z
i

component Pauli spin operator, i.e. exp(λσ z
i ) = cosh(λ) +

σ z
i sinh(λ), equation (11) can be exactly written in terms of

multiple spin correlation functions occurring on the right-hand
side. However, it is clear that if we try to treat exactly
all boundary spin–spin correlation functions, the problem
becomes unmanageable. The simplest and most frequently
used approximation (denoted by EFT-4) is to decouple them
according to

〈σ z
i ·σ z

j · · · σ z
l 〉 � 〈σ z

i 〉 · 〈σ z
j 〉 · · · 〈σ z

l 〉 (i 	= j 	= · · · 	= l),
(15)

which means that the nearest and next-nearest neighbors of
site i are assumed to be completely independent of each other.
It should be noted here that the approximation (15) is quite
superior to the standard mean-field theory (MFT), since within
the present framework (EFT) the kinematics relations is taken
exactly (i.e. (σ z

i )2 = 1) into account through the van der

3
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(a)

(b)

Figure 1. Ground state for a four-spin cluster in the AF (a) and CAF (b) phase structures.
(This figure is in colour only in the electronic version)

Waerden identity, and, as a consequence, it neglects only
correlations between different spin variables, while in the usual
MFT all the self- and multi-spin correlations are neglected.

To obtain the equation of state in the AF phase (see
figure 1(a)), we use the boundary conditions: (i) 〈σ z

i 〉 = −mAF

for i = 1, 2, 6, 11, 17, 18, 20, 22, 24 and 31; (ii) 〈σ z
j 〉 = mAF

4
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for j = 3, 4, 5, 9, 10, 14, 15, 16, 25 and 26, which are given
by

mAF = 
AF(mAF, t, α, λ) =
9∑

r=0

AAF
2r+1(t, α, λ)m2r+1

AF , (16)

where the coefficients AAF
2r+1(t, α, λ) are determined numeri-

cally by applying the identity exp(a ·D) f (x) = f (x + a), and
the final expressions are too lengthy and will be omitted.

On the other hand, the equation of state in the CAF phase
(see figure 1(b)) is given by

mCAF = 
CAF(mCAF, t, α, λ) =
9∑

r=0

ACAF
2r+1(t, α, λ)m2r+1

CAF ,

(17)
where we have used the boundary conditions: (i) 〈σ z

i 〉 =
−mCAF for i = 1, 3, 4, 5, 6, 10, 11, 15, 17 and 18; (ii) 〈σ z

j 〉 =
mCAF for j = 2, 9, 14, 16, 20, 22, 24, 25, 26 and 31 to obtain
equation (17).

Depending of the values of the parameters α and λ we
observe first- and second-order transitions. We note that it is
not possible to calculate the first-order transition line on the
basis only of the equations of state (16) and (17). To solve this
problem one needs to calculate the free energy for each state
(AF, CAF and QP). Assuming that these equations of state are
obtained by the minimization of a given energy functional like
�μ(mμ) (i.e. d�μ(mμ)

dmμ
= 0 for μ = AF, CAF), after integration

we obtain

�μ(mμ) = �1(T, α, λ) + �2(T, α, λ)

×
[

1 −
9∑

r=0

Aμ

2r+1(t, α, λ)

r + 1
m2r

μ

]
m2

μ

2
, (18)

where �1(T, α, λ) and �2(T, α, λ) are arbitrary functions
which turn out to be irrelevant when searching the second- and
first-order transitions.

From equation (18), we obtain the point of intersection
(Maxwell construction) between the free energy in the μ =
AF, CAF ordered and QP (m = 0) disordered phases. This is
given by

9∑

r=0

Aμ

2r+1(t, α, λ)

r + 1
m2r

μ = 1. (19)

In the case of the quantum phase transition between
the two ordered phases (AF and CAF), using Maxwell
construction we obtain

9∑

r=0

AAF
2r+1(t, α, λ)

r + 1
m2r+2

AF − m2
AF

=
9∑

r=0

ACAF
2r+1(t, α, λ)

r + 1
m2r+2

CAF − m2
CAF. (20)

4. Results: ground state

Solving the equation of state (16) at null temperature (T =
0), we observe that the order parameter mAF(α) in the AF
phase falls smoothly to zero when the frustration parameter
(α) increases from zero to α1c(λ) when λ < λ1 � 0.67,

Figure 2. Frustration parameter dependence of the staggered
magnetization in the AF and CAF phases for λ = 0.2 (solid curves)
and λ = 0.8 (dashed curves) for the quantum spin-1/2 J1–J2 model
on a stacked square lattice.

characterizing a second-order phase transition. On the other
hand, for λ < λ1 and α > α2c(λ) the staggered magnetization
mCAF(α) in the CAF phase, equation (17), includes an unstable
solution in addition to the stable solution. Using Maxwell
construction, which corresponds then to that point in the
phase diagram where the free energy between the QP and
CAF phases are equal, we found, by simultaneously solving
equations (17) and (19), the first-order transition point by using
the discontinuity of the staggered magnetization m∗

CAF(α) at
α∗

2c(λ).
To illustrate the nature of the phase transition, we have

shown in figure 2 the behavior of the staggered magnetization
(order parameter) as a function of the frustration parameter
(α) for λ = 0.2 (<λ1) and λ = 0.8 (>λ1), obtained
numerically from equations (16) and (17) for both AF and
CAF phases, respectively. From curves such as those shown
in figure 2 we see that for λ = 0.2 (solid curves) there exists
an intermediate region between the critical point α = α1c(λ)

at which mAF(α) → 0 for the AF phase, characterizing a
second-order transition, and the point α = α∗

2c(λ) at which
the order parameter presents a discontinuity for the CAF
phase, characterizing a first-order transition. For λ = 0.8
(dashed curves), the order parameter of the AF phase decreases
monotonically with increase of the frustration parameter from
≈0.875 for α = 0 to ≈0.850 for α = α∗

2c(λ) � 0.56. In the
CAF phase mCAF(α) decreases from ≈0.890 for α = 1.0 to
≈0.874 for α = α∗

2c(λ) � 0.56, characterizing a direct first-
order transition between the magnetically ordered AF and CAF
phases located at the crossing point. This is similar to the three-
dimensional J1–J2 model [26, 27], where we have a quantum
point at α = α∗

2c(λ) � 0.56. The disordered QP region
disappears completely and we obtain two ordered phases: AF
and CAF.

The ground state (T = 0) phase diagram of the anisotropic
3d quantum spin-1/2 J1–J2 Heisenberg model is shown in
figure 3. It is dependent on the values of α and λ. We
observe three phases, namely: AF (antiferromagnetic, see
figure 1(a)), CAF (collinear antiferromagnetic, see figure 1(b))

5
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Figure 3. Ground state phase diagram in the λ–α plane for the
quantum spin-1/2 J1–J2 model on a stacked square lattice. The
dashed and solid lines correspond to the first- and second-order
transitions, respectively. The black point represents the critical end
point CEP. The notations indicated by AF, CAF and QP correspond
the antiferromagnetic, collinear antiferromagnetic and quantum
paramagnetic phases, respectively.

and QP (quantum paramagnetic). The AF and QP phases are
separated by a second-order transition line α1c(λ), while the
QP and CAF phases are separate by a first-order transition
line α2c(λ). The presence of the interlayer parameter λ has
the general effect to suppress the QP phase. The QP region
decreases gradually with the increase of the parameter λ, and it
disappears completely at the critical end point CEP ≡ (λ1, α1)

where the boundaries between these phases merge. Above this
CEP, i.e. for λ > λ1, there is a direct first-order phase transition
between the AF and CAF, with a transition point α1 � 0.56
independent of λ � λ1, in accordance with the results of [29].
To find the transition point α2c(λ), we simultaneously solve the
three transcendental expressions given by equations (16), (17)
and (20). Such a direct first-order transition was also observed
for the classical J1–J2 model and also for the quantum J1–
J2 model on the body-centered cubic [26] and the simple
cubic [27] lattices.

5. Conclusions

To summarize, it has been confirmed in previous work [14, 16]
that exchange anisotropy reduces the quantum fluctuations and
leads to a shrinking of the QP region of the J1–J2 model.
In the present work, the quantum fluctuations in the J1–J2

Heisenberg model are tuned by an nn interlayer coupling of
strength J⊥. Again the reduction of quantum fluctuations leads
to a shrinking of the QP region. We can compare our results
obtained by EFT with available results obtained by the CCM
and RGM approaches [29]. In [29] it was found that the QP
phase disappears for λ1 � 0.19 (0.31) obtained by the CCM
(RGM) approach. These results are in qualitative agreement
with λ1 � 0.76 found in the present paper. However, the
effective-field theory in clusters with four spins (EFT-4) seems
to overestimate the value of λ1.

We have firstly treated the model (1) by using a finite
cluster with N = 2 spins (EFT-2), and the results have not been
satisfactory, where we obtain not the phase diagram in the λ–α

plane for all values of interlayer parameter (λ), only the λ = 0
and 1 particular limits. The EFT-2 was previously developed to
study the two-(λ = 0) [16] and three- (λ = 1) [27] dimensional
J1–J2 model. Therefore, in this paper we have extended our
calculations of EFT in clusters with N = 4 spins to study the
phase diagram of the anisotropic J1–J2 model for all intervals
of λ ∈ [0, 1]. The QP phase found earlier for λ = 0 in [16]
for a cluster with N = 2 spins (EFT-2) has also has been found
in the present paper, see figure 3. For a simple cubic lattice
(λ = 1) we have a direct first-order transition between the AF
and CAF phases, as observed recently by Viana et al [27] by
using EFT-2.
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